A pseudoinverse-based iterative learning control
نویسندگان
چکیده
Learning control is a very effective approach for tracking control in processes occuring repetitively over a fixed interval of time. In this note, an iterative learning control (ILC) algorithm is proposed to accommodate a general class of nonlinear, nonminimum-phase plants with disturbances and initialization errors. The algorithm requires the computation of an approximate inverse of the linearized plant rather than the exact inverse. An advantage of this approach is that the output of the plant need not be differentiated. A bound on the asymptotic trajectory error is exhibited via a concise proof and is shown to grow continuously with a bound on the disturbances. The structure of the controller is such that the low frequency components of the trajectory converge faster than the high frequency components.
منابع مشابه
Iterative Learning Control for Over-determined, Under-determined, and Ill–conditioned Systems
This paper studies iterative learning control (ILC) for under-determined and over-determined systems, i.e., systems for which the control action to produce the desired output is not unique, or for which exact tracking of the desired trajectory is not feasible. For both cases we recommend the use of the pseudoinverse or its approximation as a learning operator. The Tikhonov regularization techni...
متن کاملIterative learning identification and control for dynamic systems described by NARMAX model
A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...
متن کاملBilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control
This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...
متن کاملPerfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control
In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...
متن کاملAssociative Learning of Standard Regularizing Operators in Early Vision
Standard regularization methods can be used to solve satisfactorily several problems in early vision, including edge detection, surface reconstruction, the computation of motion and the recovery of color. In this paper, we suggest (a) that the quadratic variational principles corresponding to standard regularization methods are equivalent to a linear regularizing operator acting on the data and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Automat. Contr.
دوره 47 شماره
صفحات -
تاریخ انتشار 2002